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Simple Toda lattice motions and their linear wave equations 
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Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada 
T2N 1N4 

Received 18 December 1987 

Abstract. A structure-preserving bijection B : M -t W from the set M of Toda lattice motions 
to a natural partition W of the set of linear wave equations in 1 + 1 dimensions is applied 
to obtain some simple and related results about both M and W. The Toda lattice motions 
derived emphasise the existence of qualitatively distinct Toda lattices depending on the 
overall sign in the defining dynamical equations. The wave equations that arise illustrate 
a duality on the set of linear wave equations that is induced by the known duality on M 
generated by interpolating elements of M into motions of Kac-Van Moerbeke lattices. 

1. Introduction 

It has been shown (Torrence 1987, hereafter referred to as I) that the family of 
second-order linear wave equations in 1 + 1 dimensions with smooth coefficients has 
a natural partition, W, whose elements are in a useful correspondence with the set M 
of motions of the two-dimensional Toda lattice (ZDTL). The equivalence relation 
defining W is based on a generalisation of the Darboux (1882) map between Schrodin- 
ger equations, and the bijection B :  M + W, introduced in I ,  preserves structure by 
relating that equivalence relation to the dynamical interaction of adjacent elements of 
the ZDTL. In I B :  M - ,  W was applied to transfer a known non-trivial result about 
Toda lattice motions into an apparently new result about linear wave equations. First 
it was shown that under B each motion of a finite ZDTL of N elements with free ends 
goes to an equivalence class of N - 1 linear wave equations in 1 + 1 dimensions, each 
with the appealing property that its general solution is a progressing wave of jn i te  order, 
as defined by Friedlander (1975). Then from the explicit formulae describing a general 
solution for the motion of a finite ZDTL with free ends obtained by Leznov and Saveliev 
(1981), one generated a large family of wave equations with the physically and 
mathematically simple property that their general solutions are finite-order progressing 
waves. 

It is our purpose in this paper to investigate and illustrate properties of the 
correspondence B : M --* W by applying it to obtain some particular simple and related 
results concerning both Toda lattice motions and linear wave equations. In the next 
section we will briefly review the construction of the set of equivalence classes of wave 
equations W, the Toda lattice motions M, suitably complexified, and the bijection 
B : M + W. The wave equations with which we will begin are given in 0 3. They all 
have coefficients depending on just one variable, and therefore it will be motions of 
the one-dimensional Toda lattices ( IDTL)  that arise, and as they are known to have 
progressing-wave general solutions of finite order, so it will be motions of finite iDTL 
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that we generate. We will start with a particular countable set of wave equations 
related to the D'Alembertian in Minkowski space, and by doing elementary coordinate 
transformations to this set we will generate several additional countable sets of 
equations. Then in 0 4 we will use B-' : W + M to obtain from the equivalence class, 
in W, of the Ith equation, in each of our countable sets, a particular motion of the 
free-ended iDTL of 21+1 elements. As the equations with which we begin are all 
self-adjoint, the resulting lattice motions will all be antisymmetrical about a fixed centre 
element, an instance of a general property of B-' : W + M discussed in I. 

In 0 5 we will pass from each one of these simple ~ D T L  motions to a second motion 
by utilising the pairing of Toda lattice motions through the Kac-Van Moerbeke lattices 
(1975) as discussed by Toda (1981). Each motion of one of our lattices of 21+1 
elements can be paired in this way to a motion of a lattice of 21 elements. The new 
motions are again antisymmetrical, but they comprise an even number of elements 
and there are no fixed centre elements. In the same section B : M + W is used to 
generate from these new iDTL motions corresponding new equivalence classes of wave 
equations. The duality induced on W by that on M clearly preserves the finite-order 
progressing-wave property, as it carries j n i t e  iDTL motions to j n i t e  iDTL motions. At 
the same time it does not respect self-adjointness of wave equations. The result is a 
set of countable families of wave equations that are not self-adjoint and have progress- 
ing-wave general solutions, a result which may be new. They are dual to the useful, 
simple wave equations with which we began, and are simple in their own right. Their 
usefulness, in their own right, remains to be determined. In the concluding § 6 we 
isolate what we feel may be the more original, or useful, items that have been covered 
in the body of the paper. 

2. The map B ;  M + W 

It is straightforward to verify that by utilising a factor transformation on the dependent 
variable and coordinate transformations on the two independent variables any 
homogeneous second-order linear wave equation in 1 + 1 dimensions with sufficiently 
differentiable coefficients can be put into either of the normal forms 

(a,joau -jl)$o = 0 (2 . la )  

(aJ0au -"Ll)IjO = 0 (2 . lb )  
wherejo,j lyo,y-l  are functions of U and U. Essentially following Kundt and Newman 
(1968), one can show that inductively defining j , ,+ , (u,  U), $,,(U, U), and Jn-'(u, U), 
&,(U, U), where n is any integer, by 

(2.2a) jn+l jn 
jn - . a,, Wnl a (j, $,, ) = j,,& - 

and 

respectively, 

(2.2b) 

( 2 . 3 ~ )  

(2.3b) 
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K ,  = 

respectively. The various sequences of j, + and wave equations will be referred to 
indiscriminately as substitution sequences. Naturally the different normal forms are 
related, and the simple connection is 

r .  

0 -,1 
0 -  

- 

(2.4) 

Regardless of which normal form one considers, the corresponding substitution 
sequence is generated in both directions, and it clearly terminates for both sequences 
in both directions if and only if there exist integers M and N such that the equivalent 
conditions 

are satisfied. But precisely in this case the terminating substitution sequences of j 
correspond to terminating substitution sequences of wave equations which end with 

a u j N a u * N  = a,JMa"ljM = 0. (2 .6)  

It is easy to solve each of (2.6), and then from (2.2) to solve (2.1), obtaining - - 
+ o = j l a , ( j l j J  . . . a & N - l j N ) a u ( j N a )  (2 .7a )  

and - * .. - 
+o=j- la , ( j - , j -2) .  . . a u ( j , v + l h ) a u ( j M b )  (2 .76 )  

respectively, with a = a (  u ) ,  b = b( U )  arbitrary sufficiently differentiable functions. Thus 
one finds from (2.4) that 

* = * O + f O 4 0  and 4 = 4 0 + j o + o  (2.8) 

solve ( 2 . l a )  and (2.lb) respectively. But then (2.8) provides the general solutions of 
(2.1), and these are obviously progressive waves of finite order (and expressible, 
consequently, in closed form). 

The infinite Toda (1981) lattice, generalised to two dimensions, is the dynamical 
system governed by the countable set of coupled non-linear partial differential equations 

a;,r= (af-af)r= &,e-' (2.9) 

where ~ = u + u , x = u - u ,  (e-r)i=e-rl ,  -oo<i<+co,  ~ = f l , a n d  

2 - 1  
. 1  2 

- 1  

0 
-1 

2 
0 

-1 
(2.10) 

The choice of E is related to Toda ( 1 9 8 1 )  by E =labl /ab ,  where a, b are the two 
parameters in the dynamical equations in his § 2.2. Changing the signs of both a and 
b is equivalent to merely taking r + r ' =  -r. However the sign of E is physically 
significant. Toda consistently assumed that E = 1. However in 0 4 we will encounter 
both choices and for E = -1 IDTL motions qualitatively different from those usually 
considered. 
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-7 

0 

-1 2- 

By a finite ~ D T L  of N elements with free ends is meant the double truncation of 
(2.9) and (2.10) given by taking r={r,},=, , . . , ,N-l  and replacing K ,  by the ( N - l ) x  
( N -  1) matrix 

-1 

0 

0 

-1 2 -1 

0 

(2.1 1) 

The truncated system with N - 1 degrees of freedom is said to govern a lattice with 
N elements because in the usual mechanical interpretation of these dynamical systems 
r, is understood to be the relative displacement, r, = Y , + ~  - y l ,  of ‘adjacent’ elements of 
the lattice. 

Actually, a mechanical interpretation of (2.9) for the finite-dimensional case 
deserves some discussion. Assume we have a possibly infinite set of parallel strings 
arrayed parallel to the x axis, orthogonal to the z axis, and free to vibrate in the y 
direction with a displacement y , ( x ,  t). If the relative displacement of adjacently indexed 
strings is given by r, = Y , + ~  - y , ,  and each point of the ith string interacts exponentially 
with the corresponding (i.e. same x and t )  points of the ( i  + 1)th and ( i  - 1)th strings, 
then (2.9) governs the motion of the system. If E = -1 in (2.9), the magnitude of the 
force on the ith string due to the ( i  + 1)th string drops exponentially from +a to 0 as 
~ , + ~ - y ,  rises from -a to +CO, and similarly for the effect of the ( i -  1)th string. The 
direction of the force due to the ( i  + 1)th ( ( i  - 1)th) string is always in the negative 
(positive) y ,  direction. For E = +1 an obvious ‘reversal’ of the directional remark 
applies. For either sign of E the insensitivity of the direction of the force between 
adjacently indexed strings to the sign of their relative displacement is interpretatively 
awkward. For the infinite lattice this awkwardness can be avoided by assuming, as 
did Toda (1981), an additional constant force between adjacently indexed strings that 
opposes the exponential force. These extra forces disappear in pairs from the dynamics 
of the infinite lattice, but can be viewed as creating an equilibrium relative displacement 
for each adjacent pair, and this explains why (2.9) and (2.10) can be satisfied by a 
time-independent set of relative displacements. Unfortunately with the finite lattice 
(2.9) and (2.11), our concern in this paper, this interpretive device is not available. 
The end strings, i.e. those with minimum and maximum index values, are subject to 
non-zero forces whose directions never change, and they can have no equilibrium 
position. When we restrict ourselves to the finite iDTL by assuming dr,/dx = 0 for all 
i, these interpretive peculiarities remain, and account for the well known results of 
Moser (1975) for the case E = +1 that all finite iDTL motions produce infinite displace- 
ments and constant velocities as t -* fa. On the other hand, for E = -1 we will encounter 
examples of three distinct types of motion, all of them different from the qualitatively 
homogeneous E = +1 motions. 

We now define W by the equivalence relation embodied in (2.3~1). We define M 
to be all solutions of (2.9) with either (2.10) or (2.11), with the understanding that any 
of the displacements y ,  may have an additive imaginary part J-lr. Then 

B : M + W :  { y , }  -* { j , }  j ,  = e-y, (2.12) 

is well defined and a bijection. The essential results of Z are that B, so defined, carries 
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sets of { y i }  that generate ri = y,,, - y ,  that satisfy (2.9) with E = -1, to sets of { j i }  related 
by the defining equations, (2.2), of the substitution sequences, and that free-ended 
finite ZDTL are mapped to doubly terminating substitution sequences. It is a fact that 
the sequences can have elements of both signs and it is this that obliges us to complexify 
M as we did above. We will find that the specific sequences that we encounter in § 4 
comprise positive j, which pose no problem, or sequences that alternate in sign, which 
is easily seen to be equivalent to a real motion with E = +l .  

3. Some simple wave equations 

If one begins with the usual covariant scalar wave equation + = 0 on Minkowski space, 
expresses it in spherical coordinates T, r, 8, Q, and assumes that $ = G I (  T, r )  Y;"(8, q ) / r  
where the Y;" are the usual spherical harmonics, one finds that the r, x)  must satisfy 

1(1+1) 1(1+1) a:,*,=(af-a:)*I=- = - 
t 2  ( u + u ) 2  * I  (3.1) 

where t = r = U + U, x = T = U - U, and 1 is any non-negative integer. That equations 
(3.1) have progressing-wave solutions is known (see for example Courant and Hilbert 
(1961)), though rarely emphasised. It is clear that the transformation U = U( U), 
U = v (  V) leaves (3.1) in normal form and that the resulting equations 

(3.2) 

also have finite-order progressing-wave solutions since (3.1) does. Despite the elemen- 
tary connection between the sets of wave equations, (3.1) and (3.2), we will find that 
the corresponding Toda lattice motions can be qualitatively different. Particular choices 
of u ( V )  and u ( U )  yield all the wave equations that we will work with in the next 
section. If we choose U = tanh(aU), U = tanh(aV), or U = tan(aU), U = tan(aV), where 
a is any positive constant, then in (3.2) we obtain 

respectively. A third choice, U = tanh(aU), U = coth(aV), results in 

a21( 1 + 1) 
(a :  -a : )&  = - * I .  cosh2( u t )  

(3.3) 

(3.4) 

(3.5) 

In the latter set the right-hand sides are the well known Bargmann reflectionless 
potentials. It is not surprising that in a wave equation context they are associated with 
finite-order progressing waves; however, their simple connection, through transforma- 
tions in the uu plane, with the familiar potentials l ( l + l ) / t 2  is rarely mentioned. 
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For (3.1) and (3.3)-(3.5) it is easy to write down the substitution sequences. We 
note that in all four cases the equations are already in normal form, and with j, = 1, 
which implies that ji = l/j-i =j - i .  The four sequences begin with jo = 1 and 

/(I+ 1)/ t 2 =  I ( I +  l)/R:( t )  (3.6) 

a21(I+l)/sinh2(at)= I ( I +  l ) / R i ( r )  (3.7) 

- ~ * I ( I + l ) / c o ~ h * ( a t ) ~  I ( I+ l ) /R i ( f )  (3.9) 

a21( f+  l) /sin2(at)= I([+ l)/R:(t) (3.8) 
j l =  

respectively. In all four cases it is easy to check that d,, lnlj l l=2j, / l(I+ 1). That, 
with jo = 1, allows one to easily confirm that the full substituting sequences are simply 
given by 

1 
J-1-1 

j/+, =-- -0  jo= 1 
(3.10) 

with 6 = 1,2,3,4.  It should be noted that for S = 1 , 2 , 3  the jk are all positive, but for 
6 = 4  they alternate in sign. We see that the ratios of consecutive j ,  which figure 
prominently in the solutions of (3.1) and (3.3)-(3.5), according to (2.7), are simply 

J& - - RS2 I(Z+ 1) - ( k +  l ) k  
I ( [ +  1) - k ( k  - 1) '  j k  

(3.11) 

4. Some simple Toda lattice motions 

We now apply B-I: W + M  to the {j,} given by (3.10), first for each of (3.6)-(3.8). 
The resulting displacements and velocities are yo = Po = 0, and for 1 zs k s I, 

yk = 2k lnltl- K (  I ,  k) yk=2k/f (4.1 1 

y k = 2 k l n  - - K ( I , k )  I s i n ? ) I  
k 

K ( I ,  k ) =  I n [ l ( l + l ) - i ( i - l ) ]  l s k s l .  
i = l  

(4.2) 

(4.3) 

(4.4) 

These are real solutions of (2.9) and (2.11) for E = -1. The time intervals on which 
(4.1)-(4.3) apply are ( -oo ,O)  or (0,oo) for (4.1) and (4.2), and ( - T / u ,  0) or (0, T / U )  

for (4.3). The motions on the negative intervals are obviously the time reversals of 
those on the positive intervals in all three cases, and the motions are all antisymmetrical 
in the sense that Y-k = - y k ,  yo=O. Thus in discussing the motions we will just refer 
to the yk, 0 < k s I, with t > 0. 
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Beginning with (4.1) we see that the 1 particles ‘start’ from yk = -cc with j k  = +cc 
when t = 0, reach Yk = - K ( 1 ,  k )  with yk = 2k when t = 1 ,  and approach yk = +CO with 
yk approaching 0 when t --* +W. In the case of (4.2) the particles begin from the same 
place, reach the displacements - K ( I ,  k )  sooner, and approach yk = +oO as t --* CO, but 
with asymptotic velocities of 2ka > 0. Finally for (4.3) the particles start similarly, but 
slow to a halt when t = .rr/2a, and then return to yk = -co with yk approaching -CO, 

as t +  T / U .  The three quite different motions can be intuitively understood if one 
thinks of the whole system as a single particle moving next to a wall of potential of 
the form -e-r, which thus ranges from -CO at r = --Cc to an asymptotic maximum of 
0 as r goes to +co. In the case of (4.3) we are looking at a bound state where the 
particles have insufficient energy to escape to y = +CO, and must fall back to y = -a. 
For (4.1) we have, in a sense, an equilibrium state where the particles have exactly the 
energy required to escape to y = +co with no residual kinetic energy when they get 
there. Lastly with (4.2) we have a free state as the particles can reach y =+CO with 
energy (velocity) to spare. These remarks are consistent with a calculation of the 
system energies. For (4.2) and (4.1), summing the kinetic energies at yk = +co where 
the potential energies vanish gives, respectively, 

I 

E2 = 2 1 f(2ka)’ = ;l( 1 + 1)(21+ 1)a’ El = 0. (4.5) 
k = l  

For (4.3) the direct calculation is not quite as simple since we would have to consider 
the potential energies of relative displacement at t = ~/2a_when the particles are all 
momentarily at rest; however, noting that substituting aJ-1 for a in (4.2) produces 
(4.3) it follows that the answer must be 

E3=-~1(1+1)(21+l )a’  (4.6) 
in this case. These three motions are not among those discussed by Toda (1981) for 
the finite IDTL following Moser (1975) because these authors were solving (2.9) and 
(2.11) with E = + 1  while these are solutions for E = - 1 .  

Applying B - ’ :  W +  M to (3.10) as generated from (3.9) results in t h e j  alternating 
in sign, and consequently we must add d - 1  to each odd indexed yk, where the real 
parts of all the yk are y,=O,  

) j k  = 2ka tanh( u t )  (4.7) 

k = 1 ,  . . . ,I, with y-k = -yk. Substituting these alternately real and complex yk into 
(2.9) and (2.11) shows that the real parts, precisely (4.7), are a solution for E = +l .  
The formulae apply for the time interval (-co, +a), with the motion again antisym- 
metrical. This time the 1 s k s  1 particles start from yk = +co with velocities of -2ka 
when t = -a, move with decreasing speed in the direction of decreasing yk, come to 
momentary rest at t = 0, and then return to yk = +a3 with asymptotic velocities of +2ka. 
This motion can be understood if one views the system as a particle moving beside a 
potential wall of the form e-r, which is infinitely high at -a and approaches the 
minimum value 0 at +W. In this case energy must be positive, and one has a bound 
motion regardless of its exact value. The asymptotic kinetic energies immediately give 

E , = f l ( l +  1)(21+ l)a2 (4.8) 
for the system energy. As we have an E = +1 solution for (4.7), this is, as was to be 
expected, a simple example of the finite Toda lattice motions discussed by Moser (1975). 
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5. The dual motions and wave equations 

By doing a calculation parallel to that in Q 3.8 of Toda (1981) it is easy to verify that 
if we have a solution {xk} of the Kac-van Moerbeke (1975) system 

-fZk = E exp[-(x2k -XZk-l)l+exp[-(xZk+l - X Z k ) l  

- fzk+l  = exp[-(xzk+l - X Z k ) l +  E exp[-(x2k+Z-x2k+l)l 

(5.1) 

(5.2) 

then the sets {&} and {XZk+l}, appropriately reindexed, are themselves, separately, 
solutions of (2.9). This calculation simply generalises Toda's formulae to include the 
case E = -1. As we have three qualitatively distinct sets of solutions of (2.9) and (2.11) 
for E = -1, and one set for E = +1, we can, in principle, generate three additional sets 
for the E = -1 case and another set for the E = +1 case. We will utilise the simplicity 
of the solutions (4.1)-(4.3) and (4.7) to calculate new, dual, motions explicitly. We 
begin with the yk given by (4.1)-(4.3) or (4.7), with the correct value for E in each 
case. In terms of the Kac-Van Moerbeke lattice we known XZk = yk, and by substitution 
into (5.1) and (5.2) we obtain coupled equations overdetermining the X z k + l .  That 
these equations are consistent with X2k+]  that in fact satisfy (2.9) is the interesting 
duality noted by Kac and Van Moerbeke. Starting from the centre equation with 
x,, = yo = 0, which yields x-] = -xl ,  we can find a simple set of XZk-1, - I +  1 G k s 1, 
that satisfy (5.1) and (5.2). The resulting motion of the Kac-Van Moerbeke lattice is 
antisymmetrical, with 41 + 1 elements. Thus the new iDTL motion has 21 elements and 
is also antisymmetrical, but there is no (fixed) centre element. All of these remarks 
apply equally to all four cases, and the four new Toda lattice motions are, for E = -1, 

y, = (2m - 1) lnltl- M ( I ,  m )  j m  = (2m - l ) / t  (5.3) 

y m = ( 2 m - l ) l n  - - M ( I , m )  I I 
j m  = (2m - 1)a coth(at) 

j m  = (2m - 1)a cot(at) 

cosh( at )  
ym=(2m-1) ln l  a I - M ( / , m )  j ,  = (2m - 1) tanh(at) 

for E = +1, where yl-, = -y,, 1 s m s 1, and 

m 

M ( I ,  m ) =  l n [ ~ ~ - ( i - ~ ) ~ ] - l n  1. 
, = I  

(5.4) 

( 5 . 5 )  

(5.6) 

(5.7) 

The interpretive remarks concerning the motions (4.1)-(4.3) and (4.7) carry over 
verbatim to (5.3)-(5.6), with only the numbers changed. 

It remains to apply B : M + W to (5.3)-(5.6), and we will have generated linear 
wave equations dual to those, (3.1) and (3.3)-(3.5), with which we began. The first 
step is to generate the dual substitution sequences, and we obtain from (2.12) 

j m  = R;""-"I n [ I 2  - ( i  - l)'] = 1/jI-,,, l s m 6 l  
i = l  
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where the Ra, S = 1,2 ,3 ,4 ,  are as defined by (3.6)-(3.9). The linear wave equations 
themselves are for E = -1  

(5.9) 

sinh( a t )  la )*,=o 
( a ,  -ax )  -. ( a , + a , ) y  sinh( a t )  

sin( a t )  la 
(8, - a x )  -- sin( ar) 

cosh( a t )  la )*,=o 
( ' I  -ax)+cosh(at)  

(5.10) 

( 5 . 1 1 )  

(5.12) 

for E = +l .  The closed form finite-order progressive-wave solutions for these equations, 
whose existence is the equations' noteworthy property, are of course given by (2.7), 
where the j were just provided by (5.8). The ratios of consecutive j ,  which occur in 
(2.7), are simply given by 

jm+l I* - ( m + 1 )  m 
l 2  - m ( m - 1 )  ' 

- Ra2 
j m  

(5.13) 

The non-self-adjointness of (5.9)-(5.12) is manifest. 

6. Conclusion 

The specific calculations contained in 00 3-5 have referred to very particular motions 
of IDTL, and very special linear wave equations. These results in themselves seem to 
us of some interest. The existence of such countable sets of finite ~ D T L  motions indexed 
by the lengths of the lattices, and of such a simple analytical form, is not available in 
the literature as far as we know. The search for linear wave equations with finite-order 
progressing-wave solutions was described by Courant and Hilbert ( 1961) as a problem 
'hardly touched', and the generation of simple sets of such equations, not self-adjoint, 
may be a worthwhile contribution. 

Perhaps of more interest are the insights into general properties of the structures 
involved that the specific examples provide. First, the qualitative distinction between 
the E = $1 and E = -1 IDTL motions, and in fact such distinctions within those of the 
E = -1 type, seems not to have been explicitly discussed before. Those distinctions 
are sharply made here as we have given simple examples of each type. Second, the 
convenience of complexifying the family M of lattice motions in order that B : M + W 
be a bijection is also made clear as this arises for the E = +1 family of motions. Although 
there may be no interest in this from the point of view of Toda lattice motions, it 
allows one to manipulate equivalence classes of real linear wave equations through 
their preimages under B, and this may be important. This last consideration is 
emphasised by what seems to us the most interesting general result illustrated by our 
specific calculations. The known duality of the set M of lattice motions that obtains 
when such motions are viewed as interpolated motions within a Kac-Van Moerbeke 
lattice motion has been shown, by example, to induce a duality on at least some subset 
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of the set W of equivalence classes of linear wave equations. This duality may not 
have been recognised before and, given the ubiquity of such partial differential 
equations in mathematical physics, may be useful. The fixed centre antisymmetric 
elements of M can be related to classical fields of integer spin, as indicated by their 
generation from a scalar (spin 0) field equation, while it can be shown that there is 
an analogous tenuous connection between the antisymmetric elements of M without 
a fixed centre, and field equations for half-integer spins. One speculates that the 
Kac-Van Moerbeke duality on M, and the induced duality on W, might have ante- 
cedents in supersymmetry. 
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